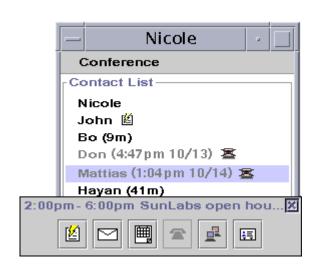
A Design Space Analysis of Availability-Sharing Systems


Juan David Hincapie-Ramos jdhr@itu.dk

Stephen Voida svoida@uci.edu

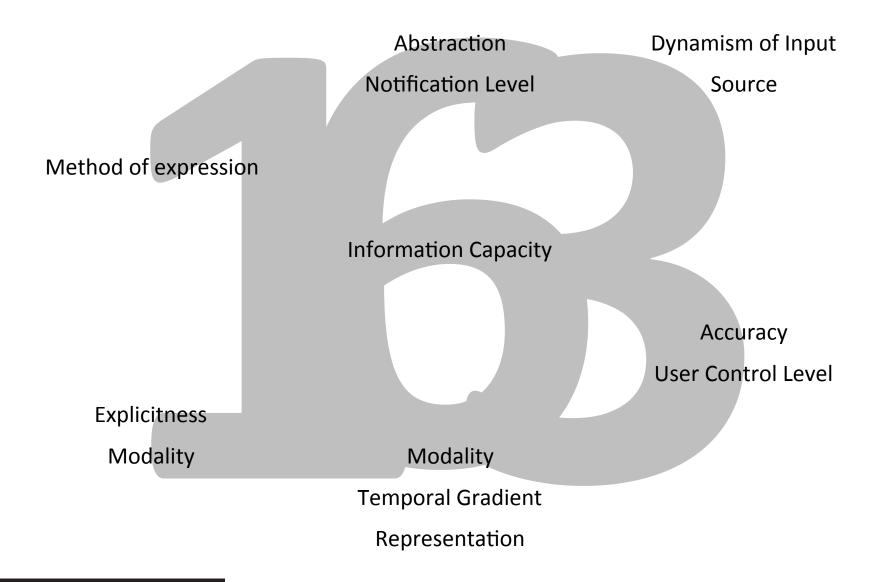
ConNexus

Awarenex

Availability-Sharing Systems

~20 years: Good Results Low Adoption

- 1 How to design such systems?
- 2 Tradeoffs for interrupter & interruptee?
- 3 Present a system design that balances needs.


~20 years: Good Results Low Adoption

- 1 How to design such systems?
- 2 Tradeoffs for interrupter & interruptee?
- 3 Present a system design that balances needs.

Source of the Interruption	Context Awareness	Location
Characteristics/Interruptee	Abstraction	Dynamism of Input
Method of coordination	Notification Level	Source
Meaning of interruption	Transition	Precision
Method of expression	Abstraction	Notification Level
Channel of conveyance	Notification Level	Private-vs-Shared
Human activity changed	Information Capacity	Place-vs-People
Effect of interruption	Aesthetic Emphasis	Input Automation
Personal-vs-Public	Abstraction	Accuracy
Focus-Peripheral	Notification Level	User Control Level
Explicitness	Transition	Notification Level
Modality	Modality	Localization of the AIS
Information Filtering	Temporal Gradient	Strategy to Assist
Coordination and Freq.	Representation	Orientation of the Activity

Source of the Interruption	Context Awareness	Location
Characteristics/Interruptee	Abstraction	Dynamism of Input
Method of coordination	Notification Level	Source
Meaning of interruption	Transition	Precision
Method of expression	Abstraction	Notification Level
Channel of conveyance	Notification Level	Private-vs-Shared
Human activity changed	Information Capacity	Place-vs-People
Effect of interruption	Aesthetic Emphasis	Input Automation
Personal-vs-Public	Abstraction	Accuracy
Focus-Peripheral	Notification Level	User Control Level
Explicitness	Transition	Notification Level
Modality	Modality	Localization of the AIS
Information Filtering	Temporal Gradient	Strategy to Assist
Coordination and Freq.	Representation	Orientation of the Activity

Context Awareness Abstraction Dynamism of Input Method of coordination **Notification Level** Source Precision Method of expression Abstraction **Notification Level** Channel of conveyance **Notification Level Information Capacity** Personal-vs-Public Abstraction Accuracy **Notification Level User Control Level** Focus-Peripheral **Explicitness Notification Level** Modality Modality **Temporal Gradient** Coordination and Freq. Representation

Abstraction

Information Delivery

Values					
Sensor Data	Availability	Natural	MultiMedia		
Continuous	Disc	rete	Literal		
Always On	Almost AO	On Request	Implicit		
Symm-Trac	Symm-Blind	Asymm-Trac	Asymm-Blind		
Focal	Selec-Focal	Secondary	Peripheral		
Historical	Recent	Current	Symmonteled		

Obtrusiveness

Temporal Gradient

Presentation

~20 years: Good Results Low Adoption

- 1 How to design such systems?
- 2 Tradeoffs for interrupter & interruptee?
- 3 Present a system design that balances needs.

Design Tradeoffs – M.S.

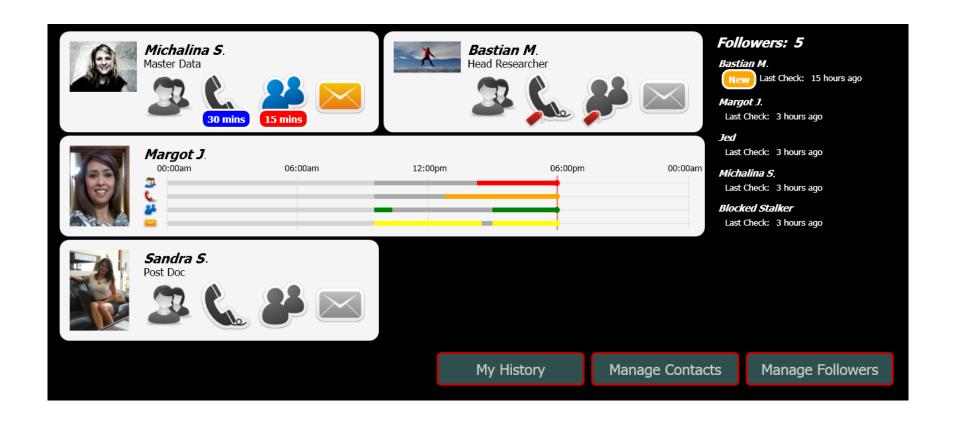
Dimension	Values				
Abstraction	Sensor Data	Sensor Data Availability Natural		MultiMedia	
Presentation	Continuous	Discrete		Literal	
Inf. Delivery	Always On	Almost AO	On Request	Implicit	
Symmetry	Symm-Trac	Symm-Blind	Asymm-Trac	Asymm-Blind	
Obtrusiveness	Focal	Selec-Focal	Secondary	Peripheral	
Temporal Gradient	Historical	Recent	Current	Predicted	

Design Tradeoffs - App

Dimension	Values				
Abstraction	Sensor Data	Availability Natural		MultiMedia	
Presentation	Continuous	Discrete		Literal	
Inf. Delivery	Always On	Almost AO	On Request	Implicit	
Symmetry	Symm-Trac	Symm-Blind	Asymm-Trac	Asymm-Blind	
Obtrusiveness	Focal	Selec-Focal	Secondary	Peripheral	
Temporal Gradient	Historical	Recent	Current	Predicted	

Tradeoffs - Interruptee

Dimensions	Optimal Values—Interruptee			
Abstraction	Sensor	Avail.	Natural	MM
Presentation	Cont.	Discrete		Literal
Information Delivery	Always	Almost	Request	Implicit
Symmetry	S(T)	S(B)	A(T)	A(B)
Obtrusiveness	Focal	Selective	Appliance	Periph.
Temporal Gradient	Hist.	Recent	Current	Predict.


Tradeoffs - Interrupter

Dimensions	Optimal Values—Interrupter			
Abstraction	Sensor	Avail.	Natural	MM
Presentation	Cont.	Discrete		Literal
Information Delivery	Always	Almost	Request	Implicit
Symmetry	S(T)	S(B)	A(T)	A(B)
Obtrusiveness	Focal	Selective	Appliance	Periph.
Temporal Gradient	Hist.	Recent	Current	Predict.

~20 years: Good Results Low Adoption

- 1 How to design such systems?
- 2 Tradeoffs for interrupter & interruptee?
- 3 Present a system design that balances needs.

System Design - InterruptMe

Dimensions	Design Solution—InterruptMe			
Abstraction	Sensor	Avail.	Natural	MM
Presentation	Cont.	Discrete		Literal
Information Delivery	Always	Almost	Request	Implicit
Symmetry	S(T)	S(B)	A(T)	A(B)
Obtrusiveness	Focal	Selective	Appliance	Periph.
Temporal Gradient	Hist.	Recent	Current	Predict.

Abstraction

Symmetry

Conclusions and Future Work

- Design space for availability-sharing systems.
- Analyzed the tradeoffs between Interrupters and Interruptees
- Used the definition to propose a new system with three novel contributions:
 - Multiple availabilities
 - Group-based Traceable-Asymmetry
 - Projector-based Information Delivery
- Long term deployment and improvements in the software, hardware and reasoning engine.
- Come see our demo.

Thank you!

Juan David Hincapie-Ramos jdhr@itu.dk

Stephen Voida svoida@uci.edu

Questions?